WEATHERWATCH - August 14, 2008

Although most of the state has recorded higher than normal precipitation totals year-to-date, some areas are dry and turfgrass is crispy. Erik Draper reported a heavy, but quick, rainfall event this past Sunday in Geauga county where over 2" of rain fell in less than 1 hour. Joe Boggs compared weather highlights from this year to last. Just one year ago, the Cincinnati area experienced a very warm August with 25 days above 90F, and 5 days above 100F. August temperatures, at least to date this year, have been much cooler.
The following weather information summarizes year-to-date data collected at various OARDC Weather Stations spanning the dates of August 1-August 12, 2008, with the exception of the soil temperatures which are readings from Tuesday, August 6 at 6:00 p.m. Some weather data from the Columbus weather station was not available at the time this article was written and is denoted at NDA (no data available).

<table>
<thead>
<tr>
<th>Weather Station</th>
<th>Region of Ohio</th>
<th>Ave. High Temp F</th>
<th>Ave. Low Temp F</th>
<th>Total Precip.*</th>
<th>Normal Precip. *</th>
<th>Soil Temp F 2"/3"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashland</td>
<td>NE</td>
<td>76.3</td>
<td>60.7</td>
<td>2.32"</td>
<td>1.3"</td>
<td>69.40 / 67.10</td>
</tr>
<tr>
<td>Wooster</td>
<td>NE</td>
<td>79.5</td>
<td>57.9</td>
<td>0.47"</td>
<td>1.5"</td>
<td>70.24 / 69.31</td>
</tr>
<tr>
<td>Hoytville</td>
<td>NW</td>
<td>84.9</td>
<td>60.3</td>
<td>0.23"</td>
<td>1.2"</td>
<td>69.99 / 68.35</td>
</tr>
<tr>
<td>Columbus</td>
<td>Central</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>75.25 / 77.70</td>
</tr>
<tr>
<td>Piketon</td>
<td>South</td>
<td>83.8</td>
<td>59.6</td>
<td>0.6"</td>
<td>0.6"</td>
<td>75.04 / 72.17</td>
</tr>
</tbody>
</table>

For more information, see:

- OARDC Weather Station

PLANTS OF THE WEEK - August 14, 2008

Read all about perennials and landscape trees and shrubs in the ONLA publications “Perennial Plants for Ohio” and “Landscape Plants for Ohio.” The descriptions and photographs of plants were provided for these publications by the OSU ENLT Team along with other industry plant lovers. These full-color publications are available at http://Buckeyegardening.com for $5.00. Click on “garden store” and then “ONLA plant guides.” ONLA members can purchase these in quantities at a reduced price at http://onla.org.

WOODY PLANT OF THE WEEK. COMMON SMOKETREE or SMOKEBUSH (Cotinus coggygria) is our woody plant of the week. Smokebush is not related in any way to tobacco. It is called smokebush because this plant develops rather showy 6-8" hairs along the panicle once the non-descript 5-petaled yellow flower is pollinated in June. This filtered, smoke-like display of pubescence changes colors and remains showy throughout the rest of the summer. *C. coggygria* is hardy in and tolerates most Ohio soils. It is best used as a shrub border as it will grow to 15' in height and spread. There are several interesting purple leaf forms currently being produced in the industry.

PERENNIAL OF THE WEEK. RESURRECTION LILY – (Lycoris squamigera). Lycoris grows well in full sun or partial shade in a well-drained soil and goes by several common names including: Magic lily, Hardy Amaryllis, Autumn Amaryllis, and the Naked Lily. Lycoris was named in honor of a Roman beauty, the mistress of Mark Antony. The most intriguing aspect of this plant is the disappearance of the leaves and then reappearance of the flowers in mid-late summer. The 1" wide basal leaves are strap-shaped and appear in the spring and die back to the ground by early summer. This is similar to the foliage character of AUTUMN CROCUS (Colchicum autumnale). The fragrant lily-like flowers are rose-lilac or pink and are 3-4" long. Propagation of this plant is done by digging up the bulb offsets after the foliage dies in midsummer.

ANNUAL OF THE WEEK. GERANIUM – (Pelargonium spp.). Annual geraniums are popular for their wide range of brilliant flower color and attractive leaves. They can be grown as bedding plants or in containers. Geraniums grow and flower best in full sun and moist, well draining soil. Geraniums growing in part shade may tolerate that level of light but will not produce flowers well. Deadhead geranium plants to maintain healthy plants. Geraniums are susceptible to disease and insects such as stem rot and mites; a good daily/weekly clean up of plant debris is an important part of garden maintenance for annual geraniums.

Barb Bloetscher reported a call came into the CWEEPPDC about a lady claiming she had a new method to control Japanese beetles. She claimed her white flowering geraniums, which had been annihilated by the bugs, were surrounded by the dead insects! This led her to claim that the white geraniums had been the cause for the death of the bugs. BYGLers discussed Geraniiol, which might be the cause for the death of the Japanese beetles. Geraniol is a substance found in geraniums that is commonly used in citronella candles and bug repellants and might have been the toxic substance that led to the death of the toxicous eaters.

WEED OF THE WEEK. COMMON GOLDBERNOOD - (Solidago canadensis). This rhizomatous perennial plant is seen along roadsides, meadows and ditches in Ohio as well as territories beyond. It is a tall, erect, leafy plant from the Asteraceae (Aster family). It produces a large, yellow, composite head flower that is arranged as curving, panicle-like clusters in August through October. These flowers produce a multitude of small seed attached to a long hair-like pappus that sit atop stems reaching up to 4 feet tall. This arrangement provides the ideal launching pad for *Solidago canadensis* to disperse its seeds by wind. Additionally, a single rhizome of goldenrod can give rise to an entire colony of plants in one season. One positive note concerning our weekly weed is hay fever sufferers are reminded that much of the pollen that makes them miserable this time of year is not produced by this plant but another weed that blooms at the same time, namely common ragweed, (*Ambrosia artemisiifolia*).

POTATO FRUIT ODDITY

Dave Goerig reported a vegetable gardener delivered a green, cherry tomato-like fruit to the office last week for identification. The owner explained to the group that the fruit was not found in his tomato patch, but was produced in his potato patch. His concerns were centered on food safety. He noted he had applied an insecticide to the plants and asked if the mutation that occurred was a result of the spray. Tomatoes and potatoes are both members of the Solanaceae (Nightshade) family of plants. Because they are related, they share many things in common. For instance, these plants are generally susceptible to the same plant diseases. Other common traits they have are their flowers look alike, and so does their fruit. Cutting the mutated leaf opened revealed a cavity full of small seeds. Mystery solved, this oddity was a fertilized flower of the potato plant that grew a small fruit! Gardeners seldom see this fruit develop in Ohio as the heat of summer soon withers the vines in the garden which signifies its time to dig the tubers. Also, plant breeders choose selections that tend to not produce fruit. Selections are based on quality, yield and disease resistance of the tubers.

The gardener was relieved to know it was not a plant mutation because of the spray material he used. He was especially thankful when we told him the tubers are still OK to eat, however under no circumstances, no matter how much they look like tomatoes, DO NOT eat this fruit because it is known to contain higher concentrations of solanine, a substance known to be toxic to humans.
CRABBY YELLOWNECKED CATS

Jim Chatfield reported observing a colony of last instar YELLOWNECKED CATERPILLARS (Datana ministra) chewing on a wild crabapple in northeast Ohio. The caterpillars pass through different "color phases" as they develop. First instar caterpillars are copper-colored with no distinct lines. Second instars have distinct alternating longitudinal yellow and orange-red lines. Caterpillars in the final instar stage have alternating longitudinal black and yellow lines. Although all instars are hairy, the hairs are most evident during the last instar stage. Another notable characteristic is that the caterpillars will lift their anterior and posterior ends to make their bodies "U"-shape when disturbed.

The caterpillars feed gregariously in colonies and their feeding behavior also changes as they develop. First instars feed as leaf skeletonizers, and later instars consume entire leaves. The colonies typically focus their attention on defoliating one branch before moving to another. Small trees with multiple colonies can be rapidly defoliated. Adding to the potential to produce heavy defoliation, yellownecked caterpillars also have at least two generations per season in northern Ohio and a possible third generation in the central and southern parts of the state.

Yellownecked caterpillars may be found feeding on a wide variety of trees and shrubs including: crabapples and other ornamental fruit trees, oak, maple, elm, beech, linden, honey locust, azalea, and boxwood. Early instar caterpillars are susceptible to the biological insecticide, Bacillus thuringiensis (Bt) (e.g., Dipel, Thuricide, or Caterpillar Attack). More traditional insecticides are needed to control later instars. Of course, a more direct (satisfying?) control method is to knock the caterpillar colonies to the ground and perform the "caterpillar dance." Thus far, no populations have developed resistance to this control method.

For more information, see:
- OSU Extension "Bug Doc" Fact Sheet
- Penn State Entomology Notes

FALL WEBWORM NESTS ARE EVIDENT

Gary Gao and Joe Bobbs reported that second generation fall webworm nests (Hyphantria cunea) are rapidly expanding and becoming very evident in central and southern Ohio, respectively. First generation nests are seldom as numerous or as large in size as those produced by the second generation. In fact, first generation nests often involve only a few leaves. However, female fall webworm moths often lay eggs on or near nests from which they developed. The nests of the second generation caterpillars usually reach their maximum size in the fall, thus the common name.

Fall webworms only feed on leaves that are enveloped by their silk nest. As caterpillars grow in size, they expand their nest by casting silk over more leaves to accommodate their expanding appetites. The webworms will feed on over 120 species of trees and shrubs including almost any shade, ornamental, and fruit tree. Joe noted he has even found nests on baldcypress.

If nests are few in number and easily accessible, the best control approach is to physically remove and destroy the nests and caterpillars. Insecticide applications should be used sparingly since insecticides may limit the impact of bio-allies. There are over 50 species of parasitoids, and 36 species of predators known to make a living off of fa

For more information, see:
- Penn State Entomology Notes
- OSU Extension, "Bug Doc" Fact Sheet

CATALPA SPHINX MOTH CATERPILLARS

Participants in last weeks emerald ash borer (EAB) update for the U.S. Army Corp of Engineers walked about in central Ohio. While looking at EAB infested ash trees, they were "treated" to a dramatic catalpa sphinx moth caterpillar (Ceratomia catalpae) infestation. One catalpa tree was almost completely defoliated while another nearby tree was made a "see-through trunk" by the caterpillars. The moth has two overlapping generations per season in Ohio. Indeed, the EAB walk-about participants observed both first and last instar caterpillars munching on their namesake host. The moths spend the winter as pupae 2-3" beneath the soil surface.

Catalpa sphinx moth caterpillars are also called catalpa hornworms owing to a distinctive black "horn" on their posterior end. The caterpillars can grow in size, they expand their nest by casting silk over more leaves to accommodate their expanding appetites. The webworms will feed on over 120 species of trees and shrubs including almost any shade, ornamental, and fruit tree. Joe noted he has even found nests on baldcypress.

Oddly, the nemesis of catalpa hornworms, the parasitoid Contesia congregata (Family: Braconidae), seemed conspicuously absent from the hornworm conclave. At least, no caterpillars were found festooned with white, oblong, silken wisp cocoons. This is a "gregarious parasitoid" meaning that multiple wasps develop inside a single caterpillar. Heavy parasitism by this wasp typically exerts significant suppressive pressure on catalpa hornworm populations. Indeed, this wasp is considered a major factor in producing dramatic year-to-year fluctuations in catalpa hornworm populations.

Tomato aficionados may recognize that this is the same species of wasp that parasitizes TOMATO HORNWORMS (Manduca
s sexta), and TOBACCO HORNWORMS (M. quinquemaculata). However, recent DNA analysis has shown there are significant genetic differences between wasps in this species that attack catalpa hornworms and those that attack tomato/tobacco hornworms.

For more information, see:
- Texas A&M Entomology Fact Sheet
- University of Nebraska Fact Sheet

PlantFacts

CYPRESS TWIG GALLS

Joe Boggs reported that the galling handiwork of the second generation of the CYPRESS TWIG GALL MIDGE (Taxodiomyia cupressiananassa), a tiny midge fly with a huge scientific name, is becoming very evident on baldcypress in southwest Ohio. Currently, the galls appear as spongy, white to bluish-white, 1/8-1/2" long elongate structures arising from the leaves. The coloration is due to a fine, powdery material covering the galls that can be rubbed-off to reveal the actual light green color of the gall surface.

The name “twig gall” is not totally accurate because the galls arise from leaves, not twigs. Needle growth extends through the galls with the needles protruding beyond the surface. A portion of this season’s growth usually extends beyond the tips of the galls. The galls will eventually shrivel and become dark gray to grayish-brown once the midge larvae complete their development. Occasionally, the foliage extending beyond the gall will die and become reddish-brown.

Opening the galls will reveal the tiny, orangish-yellow midge fly larvae (maggots), which direct the gall formation. It will also reveal that the galls are plurilocular (vs. unilocular), meaning that each gall has multiple larval cavities. This gall is also unilarval (vs. multilarval), meaning each cavity houses a single larva.

The midge fly will infest both baldcypress and pondcypress. Although the galls and browned-tipped foliage may reduce the aesthetic appeal of infested trees, the flies appear to cause no appreciable harm to the health of the tree. Populations are often regulated by a wide range of parasitoids that target the maggots. Therefore, insecticide applications are not recommended. Pruning and destroying galls now on small trees will reduce the number of future galls.

For more information, see:
- University of Florida Pest Fact Sheet

PlantFacts

YICKY YUCKY YUCCA

Joe Boggs also reported that YUCCA PLANT BUGS (Halticotoma valida) are causing noticeable injury to their namesake in southwest Ohio. The bugs use their piercing-sucking mouthparts to extract the essence of yucca. This produces small, yellowish-white spots (stippling) which may coalesce causing the foliage to turn yellow. The bugs deposit spent yucca extract in the form of black, tarry waste spots. Off-colored foliage splattered with black specks makes yucky yucca look yicky.

Adults of this small (3/16" long) native of the southwestern U.S. have black wings and orangish-reddish legs, head, thorax, and abdomen. The nymphs share this striking color scheme, but they appear more reddish in color since their black wing pads fail to cover their entire abdomen. Both adult and immature yucca plant bugs have a somewhat oval-shaped body. The bug has multiple, overlapping generations, so populations can build rapidly. Intense annual feeding activity may eventually cause yucca plants to die. Insecticides labeled for use on yucca can provide effective control of this insect; however, multiple applications are required.

For more information, see:
- Connecticut Agricultural Station Fact Sheet
- University of Maryland Plant Diagnostics

PlantFacts

VIBURNUM LEAF BEETLE CONTINUES TO SPREAD

Dave Goerig in Mahoning County reported that samples of viburnum injured by viburnum leaf beetle (VLB) (Pyrrhalta viburni) were identified by his Master Gardeners. The leaves of the host viburnum were highly riddled by the feeding of VLB. Both the larvae and the adults feed on the foliage of viburnums, however the feeding alone is not a definitive identifying characteristic for VLB. Japanese beetles also readily feed on viburnum and their injury can look very similar to VLB feeding. The undisputable pieces of evidence that VLB is the culprit damaging viburnum include: larvae feeding on the foliage in the spring; capturing the adults...
Welcome to the BYGL Newsletter

VLB is a relatively new invader into Ohio and was first observed in Ohio in 2002. Since then, VLB has been spreading further into Ohio mostly in the NE portion of the state. Most populations have been observed in wooded areas on the native ARROWWOOD VIBURNUM (Viburnum dentatum) and on EUROPEAN CRANBERRY VIBURNUM (V. opulus). As the VLB populations continue to build and spread, it is expected that infestations will spread into residential plantings of viburnum and include other preferred and moderately preferred hosts.

The most effective means of control for small scale plantings is pruning and destroying infested twigs after egg laying has ceased in the fall, anytime from October to April. When pruning is not practical, a number of pesticides may be effective in controlling VLB. Home gardeners may use acephate, carbaryl, cyfluthrin, imidacloprid or malathion. Spraying when larvae first appear in early May for best results. If damage from adults is excessive, a second application in mid- to late-summer may be helpful.

For more information, see:
- VLB in Ohio
- Cornell Citizen Science VLB Page

WHAT'S THAT IN YOUR IRIS?

Curtis Young reported receiving a sample of IRIS BORER CATERPILLARS (Macronoctua onusta) and a pupa that were discovered by a gardener when she was lifting the iris rhizomes to divide them and give them to a friend. Needless to say, her discovery was an unwelcome sight (and somewhat smelly). Iris borers can destroy irises by their tunneling through the rhizome. Their tunneling can also open up the rhizome to the entry of a bacterial soft rot. Rhizomes infected by soft rot are slimy, soft and foul-smelling. The bacterial soft rot can also spread up the leaves and flower stalk, turning them tan and water soaked in appearance. If one grabs a hold of one of these infected stalks, they will get a handful of slimy, foul-smelling goo! Full grown caterpillars are about 1 1/2-2” in length. In late July or early August, iris borer caterpillars move into the soil where they pupate. They emerge as moths in late summer or fall. Female moths lay their eggs on old iris plants in August and September where eggs remain until next spring.

Management of iris borers is difficult. However, there are several steps that can be taken to reduce their damage in gardens. Sanitation plays an important role in limiting borer attack. In July or August, if an iris plant has above-ground symptoms (brown leaf tips, early senescence), dig it up and examine the rhizomes. Discard rhizomes containing iris borer caterpillars and those with tunnels. In the late fall, remove and destroy old iris leaves, stems and plant debris. This removes and kills overwintering eggs, minimizing the risk of iris borers next year. In the spring, check rhizomes for evidence of chewing damage (i.e. pin holes and water-soaked streaks) and remove the infested leaf. This injury can be easily overlooked so look carefully. A well-timed insecticide application can help reduce an iris borer infestation. Two insecticide options for the management of newly hatched iris borers are acephate (Orthene) and spinosad (Bulls-Eye). It is important to time the application when eggs are just hatching. This is approximately when new growth is about 4-6” high. A repeat treatment 10-14 days after the first application may be necessary.

For more information, see:
- University of Wisconsin FactSheet
- Purdue note on Iris Borer

DUSTY, RUSTY TURF

RUST, a fungal disease (Puccinia spp.) of turfgrass, has been noted on many lawns around Ohio. The disease has also been seen on sports fields and golf courses throughout much of the state, and samples and calls have been streaming into the Ohio State University CWEPPDC. Rust can affect all common turfgrasses used in the United States. In Ohio, it is most common on Kentucky bluegrass and perennial ryegrass. Rust usually affects turfgrass in the late summer and fall.

Rust is usually associated with slow-growing turfgrass. It is especially severe on drought stressed sites and compacted soils where perennial ryegrass or bluegrass is growing slowly, as the disease is damaging leaf tissue faster then new leaf blades are being produced. Rust causes the turfgrass to take on a generally yellow to orange appearance, and symptoms are more evident when the weather is dry. The rust-colored tiny spores of the fungus rub off easily onto shoes, lawn mowers; pets' fur, fingers, and clothes etc. and can be a nuisance. This occurs because the fungus causes the epidermis of the leaf to rupture and release enormous amounts of spores which are orange-yellow or rusty in color.

If the disease has been a problem in the past, most likely it will reoccur year after year. Newly seeded juvenile stands of perennial ryegrass (less than a year old) are often more severely affected than mature established turfgrass lawns and sports fields. Management strategies include prevention. Use blends of resistant turfgrass cultivars. The National Turf Evaluation Program (NTEP) has free information on turfgrass cultivar quality & disease tolerance at

http://bygl.osu.edu/
Welcome to the BYGL Newsletter

http://www.ntep.org/

Provide adequate water and fertilizer to keep the grass growing. Core aerate the turf to improve water and fertilizer uptake, reduce soil compaction, improve root growth, and improve overall growth and health. Fungicide applications provide the best results if made preventively or during the very early stage of the disease. Research at OSU has suggested that the sterol inhibitors and strobilurins show good to excellent efficacy (e.g. Bayleton, Eagle, Banner, Trinity, Tourney, Heritage, Disarm and Insignia). The key is to monitor weather patterns so that the applications can be made preventively. If a fungicide is applied once the disease has become severe, often results are disappointing.

For more information, see:

- National Turfgrass Evaluation Program
- OSU Fact Sheet on Management of Turfgrass Diseases
- Cornell University Fact Sheet on Turfgrass

HONEY, THERE'S BEES IN THE WALL!

Inquiries are still coming into the Extension offices concerning colonies of honey bees which have been living in a tree or wall void since spring! Some folks thought the bees would just disappear, others never took the time to call, yet most want to have the bees removed ASAP! Unfortunately, the bees aren't so eager to leave this late in the summer. A well established colony can have 30-50 lbs of honey in the honeycomb they painstakingly made, a population of 30-60,000 bees and a fertile queen. Who would want to leave a warm, safe home like that?

The best choice at this time of year depends upon the location of the colony, and the relative ease of removing a wall. By late August, the wall void could have 6-9 layers of honeycomb filled with honey. If the building’s owner can wait, the ideal time to remove the colony is a warm spell in January-early March when the colony's population is at the lowest point, and most of the honey has been consumed. Due to many factors, most colonies do not survive the winter. Yet, by spring the likelihood of removing the comb sans bees is fairly high. An added bonus is that in cold weather, bees are slow and sluggish. In many cases, the honeycomb can be harvested and used by the beekeeper if it is disease and pesticide free.

If the owner wants to have the colony removed this year, they will probably have to hire a carpenter to help remove and rebuild the wall that is removed to extract the honeycomb and bees. In a well established colony, 5-10 feet or more of wall may need to be removed in order to even reach a portion of the comb! Obviously, this work needs to be done on warm, dry days, and the cavity should be washed and allowed to completely dry before the wall is rebuilt.

Many people try to kill the bees themselves by filling the entrance hole with insecticides, however the colony is usually above or away from the hole, so the poison does not completely kill them. The horrors begin though, if the bees are killed without removing the comb, as without the bees to cool the honeycomb on warm days, the wax and honey will melt through plaster or stucco walls. In addition, ants, carpet beetles, flies, wasps, and other sugar loving insects are attracted to this sticky sweet mess. Wax is also flammable and can be dangerous in homes with working chimneys.

In summary, because honey bees are valuable, it is best to contact a beekeeper as soon as the bees are found in almost every county in Ohio as well as other states. The homeowner can then work with the beekeeper to determine the best way to remove them. If pesticides were used, typically the beekeeper will advise that the colony will be too difficult to remove. When a colony is found late in the summer, contact a beekeeper, but consider waiting until spring to have the colony removed.

For more information, see:

- OSU Fact Sheet on Honey Bees in Walls
- Honey Bee Lab Site
- eBeeHoney.com

MAHONING VALLEY PLANT DIAGNOSTIC WORKSHOP

Spend an afternoon sharpening your insect and ornamental plant disease diagnostic skills with members of the OSU's ENLT Team on August 18 from 1:00 p.m. to 4:00 p.m. The program will be held at the Mill Creek MetroPark's McMahon Hall, 7574 Columbiana-Canfield Road (St. Rt. 46). Canfield, Ohio. Samples of the latest plant pests will be studied and analyzed. Learn from the folks who bring you the BYGL newsletter. Spend a few hours now in order to save you time later. $10.00 per person registration fee includes handouts and light refreshments. RSVP before August 11, 2008 to Mahoning Extension, 490 S. Broad Street. Canfield, Ohio 44406 or call 330-533-5538.

DIAGNOSTIC WALKABOUTS FOR THE GREEN INDUSTRY

Diagnostic Walkabouts for the Green Industry will be held in the Cleveland area 7:30 a.m. to 9:30 a.m., August 28 and September 18. Both classes will be at Sunset Memorial Park, Columbia Rd., N. Olmsted, Ohio. Pre-registration is required and class size is limited to 30 per class. Pesticide credits are available for CORE, 6A and 8.

Information and registration materials will be available at [http://lorain.osu.edu/horticulture/]

AGI FALL GET TOGETHER

Willoway Nurseries, Inc. is the location for the Associated Green Industries Fall Get Together, September 10 in Avon, Ohio. Tours and dinner will precede the evenings.

http://bygl.osu.edu/
keynote speaker, John Lloyd, from Rainbow Tree Care. John will cover Plant Health Care: Getting to the Root of the Problem. Information and registration materials will be available at http://forain.osu.edu/horticulture/.

RESIDENTIAL LANDSCAPING IN 3Ds

“Residential Landscaping in 3Ds,” a one-day program that focuses on landscape design and plant selection, is scheduled for September 30, 2008 in Delaware, Ohio. Our speakers include Melissa Hoover, owner of Melissa Hoover Landscape Design http://mhlandscapedesign.com in Lancaster, Ohio; Jennifer Schneller, Landscape Architect of Melissa Hoover Landscape Design, LTD., Lancaster, Ohio; Dr. Gary Gao, Extension Educator and Associate Professor; OSU Extension - Delaware County; Dr. Kelley Dimke, Ohio Master Gardener, Dublin, Ohio.

Continuing education credits are offered for Ohio Certified Nursery Technicians and Ohio Master Gardeners. There is a registration fee $40 per person. The fee includes this all-day program, handouts, breaks, lunch and a certificate of completion. A program flyer can be obtained by calling OSU Extension in Delaware County at 740-833-2030, or by emailing Cindy Kaelber at kaelber.1@cfaes.osu.edu, or log on to the web at [http://delaware.osu.edu/horticulture]. The registration deadline is September 27, 2008.

Space is limited. Registration will be accepted on a first come, first served basis. Late or on-site registration is subject to a $5.00 late fee.

SAVE THE DATE FOR EAB TRAINING

Purdue University, Michigan State University, and Ohio State University are collaborating to offer a multi-state EMERALD ASH BORER (EAB) program right here in Ohio. The two-day program will be held on Wednesday, September 24 and Thursday, September 25. The event will be held at the Hope Hotel at Wright-Patterson Air Force Base near Dayton, Ohio and will include speakers from all 3 states. Topics included: research updates; the latest information on utilization opportunities; status of biological controls; and insecticide options. There will also be a tour of an infested area on Wednesday evening, and a forum for educators and one for those managing ash trees on Thursday afternoon. Program details are being finalized and information on the training will be posted on the http://ashalert.osu.edu and http://emeraldasher.info.

For more information, see: OSU Emerald Ash Borer Website Emerald Ash Borer Website

BYGLOSOPHY - August 14, 2008

"The great challenge for the garden designer is not to make the garden look natural, but to make the garden so that the people in it will feel natural." - Lawrence Halprin

Website designed by Dr. Tim Rhodus. Direct comments or questions to Webmaster