BUCKEYE YARD AND GARDEN LINE 2012-25
09/20/12

From: Curtis E. Young (Lead editor), and Joe Boggs (Co-editor and contributing author).

Pam Bennett, Jim Chatfield, Erik Draper, Dave Dyke, Gary Gao, Tim Malinich, Cindy Meyer, Amy Stone, Marne Titchenell and Curtis Young (Contributing authors).

Buckeye Yard and Garden Line (BYGL) enhanced with photos and links is available online at: [http://bygl.osu.edu]. Become a fan of the BYGL on Facebook at [http://www.facebook.com/OSUEBYGL] or follow the BYGL on Twitter at [http://www.twitter.com/OSUBYGL].

****BYGL READER SURVEY NOTICE: We are doing a short electronic survey to learn about the impact of the BYGL, how the BYGL is used, and how we can improve the BYGL for next season. If you receive a special e-mail message with a hotlink to the survey, please take a few minutes to complete the survey. Your participation is voluntary and you will help us make the BYGL better for you and others next season.

This is the 25th 2012 edition of the Buckeye Yard and Garden Line (BYGL). BYGL is developed from a Tuesday morning conference call of Extension Educators, Specialists, and other contributors in Ohio.

In This Issue:

1. PLANTS OF THE WEEK: Annual (Ornamental Cabbage and Kale); Perennial (Blue Beard or Blue-mist Shrub); Woody (Purple Beautyberry); Vegetable (Brussels Sprouts); and Weed (Jerusalem Artichoke).

2. HORT SHORTS: No Fruit is Good Fruit.

3. BUG BYTES: Spotted Cucumber Beetle Update; Goldenrod Pollinator Potpourri; An Unusual Goldenrod Gall; Cedar Beetles on the Wing Again; Pigeon Tremex Horntail Discovered; and Windshield Wipes (Goldenrain Tree Bugs and Boxelder Bugs, Japanese Beetles, and Dog Day Cicada).

4. DISEASE DIGEST: Melting Sedum; and Maple Tar Spot.

5. TURF TIPS: Vagabond Sod Webworm Moths Arise from Lawns; and Rust Redux.

6. INDUSTRY INSIGHTS: No report.

7. WEATHERWATCH.

9. BYGLOSOPHY.

APPENDIX - ADDITIONAL INTERNET RESOURCES.

1. PLANTS OF THE WEEK.

*ANNUAL - ORNAMENTAL CABBAGE AND KALE (*Brassica oleracea*). Plant ornamental cabbage and kale now and sit back and wait for the fall show to begin! When temperatures are consistently cool, these plants show off their colorful rosettes of white, pinks, reds, and purples in the landscape. Ornamental cabbage and kale are the same species as their edible counterparts. However, while the ornamental versions are edible, they tend to have a bitter flavor and are often used in a culinary setting as garnishes. They are best used for replacing worn out summer annuals for a long-lasting fall display. These late-season ornamentals are wonderful in mass plantings, in mixed or single container plantings, and border plants or along the edge of a planting bed. Try to position them so as to expose their colorful centers.

Ornamental cabbages and kales cannot tolerate the heat of Ohio summers, so these plants should be started about 10 weeks before the expected date of the first frost in your area. Ornamental cabbage or kale transplants purchased for planting should be large, compact plants that are at the beginning or near full color. These plants will generally not get much bigger after they are planted in the garden, particularly if they are root bound. Therefore, be sure to buy
appropriate-sized plants for the location where they will be used. Plant them in a sunny site with moderately moist and rich soil and enjoy their beauty well into the late fall.

*PERENNIAL - BLUE BEARD or BLUE-MIST SHRUB (*Caryopteris x clandonensis*). This perennial is also classified as a shrub or even a "sub-shrub" (some woody growth that may die back through the winter) as it tends to develop woody stems during the growing season. In many Ohio gardens, winter may cause it to die back partially and haphazardly around the plant, leaving some branches tall and gangly and others short, or freezing temperatures may completely kill it back to the crown. It's a good practice to wait until it begins to leaf out in the spring to determine how much of the plant died off before pruning out dead stems. Cutting it back to the ground each spring rejuvenates the entire plant and lends to a much more attractive shape. It grows to around 3' in a season and when pruned, has an evenly rounded shape. *Caryopteris* has also been listed on many factsheets as "rarely damaged or bothered by deer."

A great feature of this plant is that it blooms in late summer right up until the first heavy frost. The flowers can be blue to purple and the foliage is green, silvery-green, yellow or green and white, depending on the cultivar. The flowers are very attractive to butterflies and bees. 'Longwood Blue' has sky blue fragrant flowers and grows to around 4' tall. 'Worchester Gold' has golden foliage with light lavender-blue flowers and foliage that is aromatic when crushed or brushed with the hand. 'Dark Knight' has deep blue flowers on 2 - 3' plants.

*WOODY - PURPLE BEAUTYBERRY (*Callicarpa dichotoma*). The plant is a rounded shrub with arching stems that grows 3 - 6' tall and as wide in some cases. The small pink flowers appear in mid-to-late summer and are not quite as noticeable as the fruit. The fruit, however, is spectacular! The lavender-pink tiny fruits are in clusters (the flower is a cyme) and begin to color up in early September. They appear along the stem and are perfectly displayed among the foliage. The fruit color lasts until late October; the fall foliage color is a pale yellow to green. When planted in masses, the effect is outstanding. The purple beautyberry prefers full sun to light shade and moist, well-drained soil. It does best in acid soil but tolerates a neutral pH.

*VEGETABLE - BRUSSELS SPROUTS (*Brassica oleracea*). Brussels sprouts have sized up nicely in the garden. This not-too-popular vegetable is a member of the cabbage family. It produces handfuls of small, green, firm, miniature cabbages low on the stem. The sprouts are actually unexpanded axillary buds arranged spirally around the stem.

Brussels sprouts need a fairly long season to grow (90 - 110 days). They are available as transplants but can also be sown indoors or direct sown into the garden. They do best in rich soil with good drainage. Cabbage moths and aphids are two major problems for sprout growers. Floating rowcovers or insecticide applications will help provide an insect-free harvest of sprouts.

As sprouts mature in early fall, it is recommended that the gardener pinch out the growing tip at the top of the plant for a more uniform harvest of sprouts. Or, one can simply harvest individual sprouts as they mature from the bottom of the stem upward. To harvest, first break off the leaf below the sprout, then pull off the spout. The cold-hardy Brussels sprouts can be harvested throughout the fall and into winter in mild areas. Gardeners maintain that they taste best after a good frost.

*WEED - JERUSALEM ARTICHOKE (*Helianthus tuberosus*). Jerusalem artichoke, also called sunroot, sunchoke or topinambur, are generally found in pastures, hayfields, roadsides, or home landscapes. This perennial plant is virtually indistinguishable from an annual sunflower at first glance. The flowers look like sunflowers with a course 5 - 10' stem. The best way to tell whether or not it is Jerusalem artichoke is to dig up the plant and see if the roots resemble a "knotty potato." While this method of identification is destructive, it will reveal the edible fleshy tubers.

These fleshy tubers can be eaten raw or cooked. The alcohol produced from the root is said to be better than that of a sugar beet. This plant is native to North America, and has been used for many centuries as a food staple. An option for control is digging up this "free source" of food and adding it to stew, gravies, or even pickling them! One low note of caution: the delicious edible tubers may induce flatulence.

While many can argue whether this plant is a friend or foe, the fact is that this plant will aggressively take over the area in which it is planted. Jerusalem artichoke spreads by a tuber system. Tubers are also the means by which plants survive the winter, since the foliage dies back after frost. The tubers then sprout in late spring with as many as 6 shoots emerging from one tuber. Tubers generally only survive in the soil a couple of years, therefore applying control measures for 2
consecutive years will generally control Jerusalem artichoke. Application of selective herbicides at the pre-bloom stage typically results in good control.

2. HORT SHORTS.

A. NO FRUIT IS GOOD FRUIT. During last week's Diagnostic Walkabout, Randy Zondag pointed out the lack of fruit on SWEETGUM (*Liquidambar styraciflua*). It seems as though the same early-season/multiple-freeze scenario that devastated fruit crops in some localized areas of the state has also eliminated the bothersome fruits on sweetgum in those affected areas. The spiky balls are just not there to litter sidewalks and yards. Also absent are samaras on maple and fruit on crabapples. And, ginkgos are sporting smaller leaves this year, apparently from the same damaging weather.

This effect is highly localized for both the landscape and in commercial orchards. One area may have been hit while a few miles down the road there was no evidence of freeze damage. There are ethylene products available that will abort fruit with a well-timed application. But this year nature apparently cleaned out the crop without any help.

3. BUG BYTES.

A. SPOTTED CUCUMBER BEETLE UPDATE. After having discussed the Spotted Cucumber Beetle [SCB] (*Diabrotica undecimpunctata*) last week on the BYGL conference call, several BYGLers discovered that SCB numbers were high in more than just the vegetable gardens. Pam Bennett discovered that several annual and perennial flowers, especially but not limited to those with yellow colored petals were crawling with SCBs.

The beetles are usually after pollen to eat, but they were also damaging many of the flower petals. As Pam and her Master Gardener Volunteers were working through their display and research gardens at the OSU Extension office in Clark County, they were finding SCBs tucked deep down in amongst the bases of the petals completely out of sight. As they moved chrysanthemums, numerous SCBs began to appear from their hiding places. This raises a bit of a red flag for retailers marketing late season flowers such as chrysanthemums. Don't just glance at stock to see if there might be a problem with SCBs, move those plants around to see what emerges from within the flowers. If SCBs are present and damage is accumulating, treatment could be tricky. One would have to look for a product that has a short or no pre-harvest interval so as not to interfere with sales.

In addition to the observations made in Clark County, Curtis Young reported damage to sunflowers that were supposed to have been used for cut-flowers, and Joe Boggs reported damage to Jerusalem artichokes in Butler County.

B. GOLDENROD POLLINATOR POTPOURRI. Ralph Waldo Emerson could easily have been describing goldenrod (*Solidago spp.*) when he wrote, "What is a weed? A plant whose virtues have not yet been discovered." Indeed, once the virtues of goldenrod were discovered, this sometimes misunderstood member of the Asteraceae family transcended "weed status" to join the ranks of plant-respectability. Forward-thinking Kentuckians were way ahead of the game when they named goldenrod as the state's official flower in 1926. Those yellow flowers on Kentucky's state flag? Goldenrod; they were put there in 1918. That level of recognition of a plant's virtues is nothing to sneeze at!

Goldenrod was once maligned by the uninformed as a serious contributor to hay fever symptoms in late summer to early fall. In fact, ragweeds (*Ambrosia spp.*) are the real culprits. Ragweeds bloom at about same time, but they are wind pollinated (= hay fever!). Goldenrod pollen is too sticky and heavy to be blown far from the flowers, thus goldenrod is mainly pollinated by insects.

Joe Boggs presented images of wide range of pollinators during the BYGL WebEx this week. The more common pollinators, such as European honey bees (*Apis mellifera*), bumblebees (*Bombus spp.*), and carpenter bees (*Xylocopa spp.*), were joined by paper wasps (*Polistes spp.*); bluewing wasps (*Scolia dubia*), the nemesis of green June beetles; hover flies (*Syrphidae spp.*), the scourge of aphids; Ailanthus webworm moths (*Atteva aurea*); black locust borer beetles (*Megacyllene robiniae*); and soldier beetles (*Chauliognathus pennsylvanicus*). Indeed, it is speculated that the black and yellow coloration of locust borers may be associated with the coloration of goldenrod allowing the beetle to dodge predators as it feeds on the pollen of yellow-flowered goldenrod. Soldier beetles are so common on goldenrod that one of their alternate common names is "goldenrod beetle."
Of course, where there is prey, there will be predators! The large number of insect pollinators attracted to goldenrod also attracts a range of insect predators. Joe showed an image of a small crab spider (family Thomisidae) feasting on a hapless fly. Goldenrod is one of the last big flower shows in the fall; the masses of yellow-gold are pay dirt for nature enthusiasts and entomologists who seek one last glimpse of a pollinator potpourri and a plethora of predators before the season closes. As Joe noted, life just doesn't get much better in the fall... except when Ohio State beats Michigan!

C. AN UNUSUAL GOLDENROD GALL. A number of interesting plant galls look so much like fungal structures that for years they were misidentified as being fungal plant diseases. Such is the case of the goldenrod leaf galls produced under the direction of the midge fly, *Asteromyia carbonifera*. The galls were originally described as the fungus *Rhytisma* spp. However, as with many things in nature, there is more to this story than meets the eye.

The galls appear as white, circular to elongate slightly raised structures on both the upper and lower leaf surfaces. The part of the gall on the upper leaf surface usually has a faint black ring near the outer edge making the galls look target-like. Gall growth occurs under the direction of the fly maggot; however, the galls are also home to a symbiotic fungus, *Sclerotium asteris* (= *Rhytisma asteris*).

As the galls reach maturity, the fungus undergoes a rapid proliferation of growth filling the gall void and enclosing the midge larva in a fungal pupation chamber. The fungal mycelium soon differentiates to form a black, tough, dense vegetative structure called a stroma. The black, carbon-like stroma may be revealed by carefully peeling away the surface of the galls on the lower leaf surface. The stroma adds rigidity to the gall structure, and it also helps to protect the midge maggots and pupae from the depredations of the parasitoid wasp *Torymus capitae*. The wasp probes the gall with its ovipositor seeking to lay an egg in the immature flies; however, their ovipositors cannot easily penetrate the fungal stroma. Although the galls were originally misidentified, there was indeed a fungus among us ... a very good thing for the midge fly!

D. CEDAR BEETLES ON THE WING AGAIN. Curtis Young reported that cedar beetles (*Sandalus niger*) have begun their annual flight and mating ritual. Cedar beetles are relatively large (1" in length and 3/8" in width) black or brown colored beetles. The species is most easily identified by the unusual antennae of the males. The males have very large "lamellate" antennae which means the antennae consist of a groups of flat plates that fit closely together or can spread out like a folding fan (very impressive to see). The females on the other hand, have short, club-like antennae that are not nearly as showy as the males. However, since the males and females are often found together in mating clusters on trunks of trees, the females can also be identified.

Although the cedar beetles are frequently discovered on the trunks of trees, they do no harm to any tree species. The larvae of cedar beetles are parasites of cicadas and the adult beetles do not feed on trees either. Cedar beetles typically emerge in September and may still be around through October. More people may discover the cedar beetle because they are on high alert for the Asian longhorned beetle (*Anoplophora glabripennis*), and when large beetles are spotted lurking around their trees, they become concerned. Curtis has seem single beetles to groups of 4 or 5 beetles in mating clusters, but a review of literature revealed reports that in some cases they have been observed in clusters as big as 40 - 50 or more. The beetles also fly around somewhat lethargically just under the canopy of the tree where the mating frenzy is occurring.

Mating clusters are usually composed of one or a couple of females and numerous males. With so many males clustered around individual females, the females most likely give off a sex pheromone (a chemical to attract the opposite sex) that is scooped up by the large lamellate antennae of the males drawing them in by the droves to find the females. The females usually have distended abdomens and are often so heavy with eggs, they can't really fly well. However, when they do spread their wings, a bright orange to yellow-orange abdomen is revealed.

After mating, the females creep around on the bark of trees and lay hundreds of eggs in crevices. This egg laying activity could make one think that the beetle is attacking the tree. However, as the one common name of this beetle implies, "cicada parasite beetle," the beetle does no harm to the tree. When the eggs hatch, the larvae (grubs) drop to the ground where they dig in and search for cicada nymphs (most likely one of the annual cicada species) which should be about a half-inch long by this time of the year. If the beetle grub finds a cicada nymph, it apparently becomes an ectoparasite. It basically chews a hole through the cicada shell and sucks out body fluids. The cicada nymph continues to feed, but doesn't grow well. Eventually, the parasite will kill the nymph and transform into another adult beetle.
E. PIGEON TREMEX HORNTAIL DISCOVERED. A sight not often seen was reported to Curtis Young this week. A resident of Van Wert County was splitting firewood and exposed adult pigeon tremex horntail wasps (Tremex columba) in tunnels inside of the logs. The larvae of the pigeon tremex horntail are wood borers tunneling deep within the trunks and branches of the dead trees, especially dead elms. However, they were not the causative agent of the death of the trees. They are only attracted to dying or recently dead host trees, such as American elm trees killed by Dutch elm disease. Apparently, at least one of the trees that the wood-splitters had cut down for firewood was an elm tree, and their timing was impeccable because they were splitting the wood just before the new adult wasps emerged from the host tree. The adult wasps were only found in the tunnels after they had emerged from their pupal cases and before they exited the trees. An additional treat in this find was discovering a male pigeon tremex horntail wasp among the adults pulled from the logs. Typically horntails are discovered long after they had emerged from the larval host trees and usually it is the females that are observed while they are ovipositing in the trunks of new host trees - no males in sight. This somewhat unique discovery of the horntail adults inside of the tunnels is a "heads-up" that the horntails will soon be found on the outsides of trees - dead and dying - laying their eggs into the trunks for the next generation.

This is also a reminder that it is the time of year that the parasite of the horntails, the GIANT ICHNEUMON WASPS (Megarhyssa macrurus) are soon to be found as well. These extra-large wasps are an impressive sight. Although ferocious looking, the giant ichneumons are unable to sting with their enormous ovipositors. Both wasps are magnificent specimens of nature to be observed and marveled.

F. WINDSHIELD WIPES. BYGLers ran into a few other plant pests this week including:

* The recognition that GOLDENRAIN TREE BUGS (Jadera haematoloma) occur in Ohio and may have been misidentified as BOXELDER BUGS (Boisea (= Leptocoris) trivittata) has been a recurring topic in this season's BYGL. However, as Curtis Young and Cindy Meyers noted, boxelder bugs remain a top concern this season in northwest and southwest Ohio, respectively. Both reported that they have either observed or have gotten frantic phone calls concerning boxelder bugs colleting en mass on or near homes in preparation for a little breaking-and-entering to escape the winter. The bugs are seed-feeders, so they cause no significant harm to the health of their host trees (primarily maples and ash); however, terrified reactions to the bugs appearing inside a home may affect the health of the homeowner!

* BYGLers in the northern and southern parts of the state reported observing JAPANESE BEETLES (Popillia japonica) feeding on roses and other host plants. Either the beetles are remaining active for an extended period of time this season, or there has been a late-season emergence. Both phenomena have been reported in the BYGL during past seasons; however, the impact on overall population numbers from year-to-year has not been documented.

* Joe Boggs reported that DOG DAY CICADAS (Tibicen spp.) are continuing to "sing" in southwest Ohio when temperatures support this behavior. For example, he noted that the numbers of cicadas singing last Thursday (Sept. 13) when temperatures were in the low 80's seemed comparable to the numbers heard in August. The cicadas appear to be enjoying a very long mating season this year in the southwest part of the state.

4. DISEASE DIGEST.

A. MELTING SEDUM. Collapsing, disease-ridden sedum were reported by a few BYGL participants this week. Sedum (Sedum spectabile) are normally considered a tough, almost foolproof, plant. However, under the right conditions they will experience problems with root rots, and foliar diseases. In this case, bacterial soft rot (Erwinia chrysanthemi) seems to be the culprit as the sedums collapse and the tissue looks water-soaked or greasy. A foul smell usually accompanies Erwinia soft rots. Bactericides are available for treatment, but crop rotation, sanitation, and water management are equally important in managing this and other bacterial diseases.

B. MAPLE TAR SPOT. Several BYGLers reported that maple tar spot symptoms are becoming more evident in northern Ohio as the season winds down. Amy Stone noted that the she is seeing the disease most commonly on silver maples in her part of the state while Curtis Young and Tim Malinich reported that Norway maples are most heavily infected in their parts of the state. The disease is caused by two fungi, Rhytisma acerinum and R. punctatum. The leaf symptoms start out as greenish-yellow spots early in the summer. As summer progresses towards fall, the black "tar-like" stroma of the fungus becomes prominent. With R. acerinum the tar-like spots may be as much as 1/2" across, but with R. punctatum there are clusters of much smaller "punctuated" tarry spots.
In addition to the spots, some leaf drop can occur from tar spot. Fortunately, in a typical year, most of the leaf drop occurs in August and September after much of the critical photosynthetic food production in the plant leaves has already occurred for the season. For this reason, maple tar spot is generally considered to be more of threat to aesthetics rather than tree health. The fungus overwinters on fallen leaves, producing fruiting bodies which release spores to new foliage the next spring, so raking up and destroying affected leaves can help break the disease cycle from year to year.

5. TURF TIPS.

A. VAGABOND SOD WEBWORM MOTHS ARISE FROM LAWNS. In a "virtual report," Dave Shetlar (OSU Entomology) noted that vagabond sod webworm moths (Agriphila vulgivagella) are making their annual appearance on lawns in central Ohio. The moths emerge in large numbers in September and sometimes cause considerable alarm. Homeowners and turfgrass managers may think their turfgrass is under assault from more serious sod webworm moths. However, vagabond sod webworms cause little significant damage despite their impressive late-summer aerial displays. The vagabond sod webworm has only one generation per year. The moths currently on the wing will mate and drop eggs onto the turfgrass. The resulting caterpillars feed on the turfgrass; however, since plants are typically fast-growing in the fall, little real damage is done. The caterpillars overwinter and continue feeding in the spring. Again little damage is done since they feed on the fast-growing spring grass. Eventually, the caterpillars form a pupal case and remain inside the case as pre-pupae until late-August. In September, they pupate and eventually emerge as adults. While these webworms cause little damage to home lawns, they may occasionally need to be managed on golf course tees and greens. There is only one generation per year.

B. RUST REDUX. In BYGL 2012-21 (08/23/12), we reported that rust was appearing on lawns in southwest Ohio. This week, Curtis Young reported that rust is becoming very evident on lawns in the northwest part of the state. The fungus (Puccinia spp.) can infect all common turfgrasses used in the United States. In Ohio, it is most commonly found on Kentucky bluegrass and perennial ryegrass. The fungus seldom causes severe damage to turfgrass plants; however, it causes the epidermis of the leaf to rupture and release enormous amounts of orangish-yellow or rusty colored spores. The spores can become a real nuisance as they are easily rubbed off onto shoes, lawn mowers, pet fur, fingers, cloths, etc.

Rust usually affects turfgrass in the late summer and fall and infections are most commonly found on slow-growing turfgrass. Juvenile turfgrass that is less than a year old is often more severely affected than mature established turfgrass. The disease may be especially severe on poorly fertilized turfgrass, drought stressed turfgrass, and on sites with compacted soils. Under poor turfgrass growing conditions, the fungus infects the leaf tissue faster than new leaf blades are being produced so the diseased tissue is not mowed off. Healthy turfgrass is capable of "outgrowing" the disease. Thus, the best management strategy is to improve conditions that support turfgrass growth. For example, this is the optimal time of the year to make an early fall fertilizer application.

6. INDUSTRY INSIGHTS: No report.

7. WEATHERWATCH. The following weather information summarizes data collected at various Ohio Agricultural Research Development Center (OARDC) Weather Stations spanning the dates from September 1 - 19, 2012, with the exception of the soil temperatures which are readings from Wednesday, September 19, 2012 at 6:05 p.m.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashtabula</td>
<td>NE</td>
<td>76.6</td>
<td>57.5</td>
<td>2.49"</td>
<td>3.0"</td>
<td>62.61/65.98</td>
</tr>
<tr>
<td>Wooster</td>
<td>NE</td>
<td>78.4</td>
<td>54.9</td>
<td>2.78"</td>
<td>2.1"</td>
<td>65.98/65.32</td>
</tr>
<tr>
<td>Hoytville</td>
<td>NW</td>
<td>78.7</td>
<td>54.6</td>
<td>2.34"</td>
<td>1.8"</td>
<td>65.06/63.12</td>
</tr>
<tr>
<td>Columbus</td>
<td>Central</td>
<td>81.6</td>
<td>58.1</td>
<td>1.75"</td>
<td>1.8"</td>
<td>67.93/67.54</td>
</tr>
<tr>
<td>Piketon</td>
<td>South</td>
<td>82.5</td>
<td>57.0</td>
<td>1.08"</td>
<td>1.2"</td>
<td>70.66/70.59</td>
</tr>
</tbody>
</table>
For a link to the OARDC Weather Stations, visit: [http://www.oardc.ohio-state.edu/centernet/weather.htm].

8. COMING ATTRACTIONS.

A. 2012 COMMERCIAL NEW APPLICATOR TRAINING SCHEDULED. The Ohio State University Extension's Pesticide Safety Education Program has one scheduled training date left for those preparing to take the commercial applicator's exams including Core, 8 (Turf), 5 (Industrial Vegetation); 6c (Ornamental Weed) and 2c (Agricultural Weed). The morning session also qualifies as Trained Serviceperson training. This last date is September 26, 2012. Registration begins at 8:30 a.m. Additional information, including pre-registration is available on the web at [http://pested.osu.edu/commnewapp.html].

B. DIAGNOSTIC WALKABOUTS FOR THE GREEN INDUSTRY. The last class of the season will be held in the Cleveland area on September 27, 2012 from 7:30 - 9:30 a.m., at Sunset Memorial Park. Pre-registration is required and class size is limited to 50. ODA, ISA and OCNT credits are available. For registration, location and pesticide credit information see: [http://www.onla.org].

C. BLUEGRASS-BUCKEYE BYGLive! The 15th Annual Bluegrass-Buckeye BYGLive! will be held on Monday, October 1, 2012, from 10:00 a.m. - 3:00 p.m. at Lexington Cemetery, 833 West Main Street, Lexington, KY 40508 [http://www.lexcem.org/]. Participants will meet next to the Henry Clay Monument; this is the tallest structure in the Cemetery!

Thanks to the host, Larry Hanks (Pampered Properties, Lexington, KY), this year's Buckeye-Bluegrass BYGLive! is shaping-up to be a truly memorable event with research updates and "what's happening" overviews from the University of Kentucky and Ohio State University Extension and a diagnostic walk-about (dress for a hike!) and diagnostic catharsis.

Registration fee is $15.00; the fee will cover the cost of lunches. You can register by credit card by calling Kim Martini at 513-946-8989 or Julie Crook at 513-946-8998. Or, you can register by mail by sending your fee (checks payable to "OSU Extension") to Kim Martini c/o Bluegrass-Buckeye BYGLive!, OSU Extension, Hamilton County, Suite 315, 110 Boggs Lane, Cincinnati, OH 45246. Registration deadline is 1:00 p.m., Thursday, September 27, 2012. For more information, contact Joe Boggs [boggs.47@cfaes.osu.edu].

D. WHY TREES MATTER FORUM: CANCELLED FOR 2012. The Forum scheduled for Wednesday, October 17, 2012 in Wooster is cancelled for this year due to scheduling difficulties. Look for its return in 2013.

9. BYGLOSOPHY: "The greatest service which can be rendered any country is to add a useful plant to its culture." - Thomas Jefferson

APPENDIX - ADDITIONAL INTERNET RESOURCES:

Buckeye Turf
http://buckeyeturf.osu.edu

Emerald Ash Borer Information
http://ashalert.osu.edu

Growing Degree Days and Phenology for Ohio
http://www.oardc.ohio-state.edu/gdd/

Hungry Pests Website
http://www.HungryPests.com

Ohio State University Department of Horticulture and Crop Science Plantfacts http://plantfacts.osu.edu/web/
Ohio State University Extension Master Gardener Volunteer Program
http://mastergardener.osu.edu

The C. Wayne Ellett Plant and Pest Diagnostic Clinic (CWEPPDC)
http://ppdc.osu.edu/

USDA APHIS Beetle Buster Website (Asian Longhorned Beetle)
http://www.beetlebusters.info/

USDA APHIS Beetle Detective Website (Asian Longhorned Beetle and Emerald Ash Borer)
http://beetledetectives.com/

Following were the participants in the September 18th conference call: Pam Bennett (Clark); Joe Boggs (Hamilton); Dave Dyke (Hamilton); Tim Malinich (Erie), Cindy Meyer (Butler), Amy Stone (Lucas); Marne Titchenell (School of Natural Resource); Curtis Young (Van Wert); and Randy Zondag (Lake).

BYGL is available via email, contact Cheryl Fischnich [fischnich.1@cfaes.osu.edu] to subscribe. Additional fact sheet information on any of these articles may be found through the OSU FactSheet database [http://plantfacts.osu.edu/].

BYGL is a service of OSU Extension and is aided by support from the ONLA (Ohio Nursery and Landscape Association) [http://onla.org/; http://buckeyegardening.com/] to the OSU Extension Nursery, Landscape and Turf Team (ENLTT). Any materials in this newsletter may be reproduced for educational purposes providing the source is credited.

BYGL is available online at: [http://bygl.osu.edu], a website sponsored by the Ohio State University Department of Horticulture and Crop Sciences (HCS) as part of the "Horticulture in Virtual Perspective." The online version of BYGL has images associated with the articles and links to additional information.

Where trade names are used, no discrimination is intended and no endorsement by Ohio State University Extension is implied. Although every attempt is made to produce information that is complete, timely, and accurate, the pesticide user bears responsibility of consulting the pesticide label and adhering to those directions.

Ohio State University Extension embraces human diversity and is committed to ensuring that all research and related educational programs are available to clientele on a nondiscriminatory basis without regard to race, color, religion, sex, age, national origin, sexual orientation, gender identity or expression, disability, or veteran status. This statement is in accordance with United States Civil Rights Laws and the USDA. Keith L. Smith, Ph.D., Associate Vice President for Agricultural Administration and Director, Ohio State University Extension, TDD No. 800-589-8292 (Ohio only) or 614-292-1868.