BUCKEYE YARD AND GARDEN LINE 2013-20
08/15/13

From: Amy Stone (Lead editor and contributing author) and Julie Crook (Co-editor and contributing author).

Pam Bennett, Joe Boggs, Jim Chatfield, Erik Draper, Denise Ellsworth, Gary Gao, Ashley Kulhanek, Denise Johnson, Tim Malinich, Cindy Meyer, Amy Stone, Marne Titchenell, Danae Wolfe and Curtis Young (Contributing authors).

Buckeye Yard and Garden Line (BYGL) enhanced with photos and links is available online at: [http://bygl.osu.edu]. Become a fan of the BYGL on Facebook at [http://www.facebook.com/OSUBYGL] or follow the BYGL on Twitter at [http://www.twitter.com/OSUBYGL].

This is the 20th 2013 edition of the Buckeye Yard and Garden Line (BYGL). BYGL is developed from a Tuesday morning conference call of Extension Educators, Specialists, and other contributors in Ohio.

In This Issue:

1. PLANTS OF THE WEEK: Annual (Nasturtium); Perennial (Naked Ladies, Resurrection Lily, Magic Lily); Woody (Yellowwood); and Vegetable (Tomatillo).
2. HORT SHORTS: House Wren Nesting Season in Full Swing!
3. BUG BYTES: Yellownecked Caterpillar ID Challenge; Baldcypress Twig Gall; and Windshield Wipes (The Common Bagworm and Japanese Beetle).
4. DISEASE DIGEST: Moist Chamber and Diagnostic Challenges.
5. TURF TIPS: No Report.
6. INDUSTRY INSIGHTS: Thousand Cankers Disease (TCD) Confirmed in Ohio; EAB – Ambrosia Beetle Connection?; and Elongated Hemlock Scale.
7. WEATHERWATCH.
8. COMING ATTRACTIONS: Diagnostic Walk-Abouts for Green Industry; Ohio Plant Diagnostic Workshop; Name That Tree Workshop; and Why Trees Matter Forum.
9. BYGLOSOPHY.

APPENDIX - ADDITIONAL WEBSITE RESOURCES.

1. PLANTS OF THE WEEK.

*ANNUAL - NASTURTIUM (Tropaeolum spp). Nasturtiums are very easy to grow and can be started from seed or from plants; they may also reseed in the garden each year. These plants are even known to tolerate a small amount of neglect and still thrive. Plant them in full sun, however, keep in mind that they actually prefer cool temperatures and may need a little afternoon shade to protect them from summer heat. Nasturtiums don't need rich, high quality soils, but they do require good drainage.

Flowers bloom from early spring to fall and are found in shades of orange, red, yellow, and creamy-white. Breeders have made great strides in developing flowers that show up above the foliage; older varieties tend to have flowers hidden by the foliage. Don't over fertilize nasturtiums as this leads to lots of foliage at the expense of the flowers. Some varieties are climbers, growing as much as 6 - 10" tall while others are short, bushy varieties. 'Jewel of Africa' is a variety with green leaves with white spots and a mix of orange, scarlet, and off-white flowers. Nasturtium flowers are also edible and make great additions for salads and desserts.
*PERENNIAL - NAKED LADIES, RESURRECTION LILY, MAGIC LILY (*Lycoris squamigera*). When a Master Gardener Volunteer gets a call on the Horticulture Helpline with the question, "There are naked ladies in my front yard and I don't know what to do with them," they are left speechless! After a few minutes of confusion and a few comments (can't print them!) it was determined that these naked ladies were indeed in the front yard and the gardener needed information on what to do after they bloom. They turned out to be the plants called *L. squamigera*, a beautiful bulb in the amaryllis group. This name, along with countless others, is used to describe the unique behavior of this bulb.

The leaves appear in the spring, well before the flowers; they are long and narrow (about 2" wide) and resemble those of the bulb *A. hippeastrum* that are grown around the holidays. In late summer, it seems like the flowers appear all of a sudden. This how they get the names of magic and resurrection lily. The large pink flowers resemble an amaryllis bloom and sit proudly on top of stems that are around 2 - 3' tall.

These bulbs are easy to grow and are hardy if they have well-drained soils. When the foliage dies in the summer, gardeners should cut it back to the ground. After the flowers finish blooming, cut the stems back to the ground level. It's reported that deer don't like these bulbs. The bulbs themselves are poisonous and if ingested, can cause abdominal pain.

*WOODY - YELLOWWOOD (*Cladrastis kentukea*). This medium sized (30-50') native shade tree is a lovely ornamental with smooth gray beech-like bark and wonderfully aromatic pendulous white flower panicles that appear in late spring. Though the flowers are somewhat inconstant, often numerous only every 2-3 years. The leaves are compound and pinnate and each large compound leaf may be up to 10" long with 5-11 leaflets. Yellowwood, also known as virgilia in the south is in the bean (Fabaceae) family with its tell-tale fruit pods. It has a broad, rounded habit which sometimes spreads out a bit much with age and is subject over time to damage from high winds. Fall color is yellow to orange. Yellowwood is adaptable to various soils, and tolerates both alkaline and acid conditions. Wood is prized for the eponymous yellow heartwood and is used for specialized furniture, for gunstocks and by woodturners. Check out large specimens at arboreta from Cincinnati to Cleveland and plant yellowwood in your woodscapes.

*VEGETABLE – TOMATILLO (*Physalis ixocarpa*). The tomatillo is a member of the nightshade (Solanaceae) family. Other family members include tomato, potato, eggplant, and peppers. They are native to Mexico where it has been grown as a food crop for hundreds of years. As a traditional part of Mexican cooking, tomatillos are found in stews, moles, and salsas. Tomatillos are bushy, spreading plants that may grow to a height and width of 3 - 4". The plants are indeterminate and will continue flowering and producing fruit until killed by frost. Tomatillos are round green tomato-like fruits enclosed in thin, papery husks. Tomatillos are firmer than tomatoes and their flavor is similar to a tangy lemon. In Ohio the tomatillo is an annual and grows best in full sun and moist, fertile soils. They are usually planted as transplants after the danger of frost has passed. The transplants can be purchased or started indoors from seed. They should be planted 3" apart with rows 3- 6" apart. For maximum fruit production adequate moisture and weed control are essential. Tomatillos require 1" of water per week, either from rainfall or irrigation. Adding an organic mulch will help to keep the soil moist and keep the weeds to a minimum. Tomatillos are ready to harvest in 75 to 100 days after transplanting. For best flavor, harvest the fruit when the husk changes from green to tan and the fruit is still green.

2. HORT SHORTS.

A. HOUSE WREN NESTING SEASON IN FULL SWING! BYGLer Marne Titchenell reported observing several HOUSE WREN (*Troglodytes aedon*) nests during a recent monitoring excursion of
bluebird nest boxes in central Ohio. She noted the importance of remembering that several other Ohio songbirds use bluebird nest boxes throughout the summer season besides bluebirds. EASTERN BLUEBIRDS (*Sialia sialis*), TREE SWALLOWS (*Tachycineta bicolor*), and CHICKADEES (*Poecile* spp.) begin nesting earlier in the season (March and April) and have already completed or are close to completing their nesting season by mid to late August. House wrens on the other hand, begin their nesting season a bit later, in June, and finish in September. By this time of year, many nest boxes are free and open for house wren use.

The evidence that a house wren has taken up residence in a bluebird nest box is pretty elementary. House wrens build their nests mostly with small twigs and sticks that fill almost the entire nest box. Within the cluster of the surprisingly neatly organized twigs, is a small cup-shaped depression lined with grasses, fibers, rootlets, and feathers. House wren eggs are white but so heavily speckled with cinnamon-brown spots they can appear tan in color.

An interesting territorial display of house wrens is the construction of 'dummy nests'. A dummy nest is a not-so-neat compiling of sticks and twigs in a nest box. Dummy nests will have an unfinished, haphazard look to them. As with bluebirds, it is the male house wren that scopes out potential nest sites, and not the female. He will establish his territory by building dummy nests in all or most of the nest boxes in an area. The female will then come along and choose an acceptable nest to put the finishing touches too. The other, unused dummy nests remain, however, through the nesting season. This behavior can become a problem in the early part of the nesting season, in June and July, when bluebirds, tree swallows, and chickadees are still nesting. These dummy nests prevent these species from claiming a nest box for themselves. Once a house wren has laid eggs, dummy nests in nearby nest boxes can be removed, freeing them up for other species. Remember, songbirds of the same species will rarely nest close to each other, however they don't seem to mind nesting near another species. In fact, Marne observed a bluebird fledging her last clutch of the year in nest box 10' away from a house wren nest. This is why bluebird nest boxes are often paired together on a trail.

3. BUG BYTES.

A. YELLOWNECKED CATERPILLAR ID CHALLENGE. Participant in this week's S.W. Ohio BYGLive! Diagnostic Walk-About observed a colony of early instar YELLOWNECKED CATERPILLARS (*Datana ministra*) that presented an identification challenge. Yellownecked caterpillars are typically described as having black heads and a bright orange "neck," or prothorax, which gives them their common name. While the caterpillars observed by the Walk-About participants had black head capsules, the bright orange "neck" was not evident.

It is well-known that yellownecked caterpillars pass through three distinct color phases during their development. "Color phases" means the caterpillars change their colors and markings as they mature through different instar stages. The first instars are usually described as copper colored with no distinct lines. Middle instar caterpillars have distinct alternating longitudinal yellow and orangish-red lines. The final color phase is observed on last instar caterpillars, which have alternating longitudinal black and yellow lines. Although all instars have hairs, the hairs are most evident during the last instar stage. The caterpillars observed during the Walk-About were light yellow with faint longitudinal reddish colored lines except for a very distinct dark red line running down their backs.

So what's going on? Many types of caterpillars are described as having variable coloration during their development. As described above, color phases means the changes are associated with different instar stages. However, if a range of colorations and markings are observed with equal-aged caterpillars, it is said that the caterpillars have different color "forms." It would appear that yellownecked caterpillars have
different color forms as well as color phases with the coloration observed during the Walk-About being a somewhat unusual color form.

Yellownecked caterpillars are general defoliators and they feed in groups that may include 10-30 caterpillars. First instar caterpillars often go unnoticed since they only skeletonize the leaf epidermis. Damage becomes more apparent when the caterpillars reach the second instar stage and consume most of the leaf, except for the midvein. In later instars, they devour whole leaves, often including the petiole. Since the caterpillars are gregarious feeders, defoliation tends to occur one branch at a time, unless populations are high and multiple groups are feeding on many branches. The caterpillars feed on a wide variety of trees including: crabapples, flowering fruit trees, maples, elms, nut trees, beech, lindens, honey locusts, and boxwoods. There are normally two, and sometimes three generations in Ohio.

B. BALDCYPRESS TWIG GALL. Participants in this week's S.W. Ohio BYGLive! Diagnostic Walk-About also observed the galling handiwork of *Taxodiomyia cupressiananassa*, a tiny midge fly with a large scientific name. The spongy, elongate, 1/8-1/2" long galls produced by the fly appear white due to a covering of fine, powdery material. Rubbing the powder off the galls reveals their true light green color. The common name "twig gall" is technically inaccurate since the galls actually arise from the base of leaflets. Needle growth extends through the galls with the needles protruding beyond the surface of the galls and a portion of this season's growth usually extends beyond the tips of the galls.

Opening the galls will reveal the tiny, orangish-yellow midge fly larvae (maggots) that directed gall formation. Each maggot is individually housed in its own tiny compartment. Once maggots pupate, and a new set of adults emerge, the galls will eventually shrivel and detach from the trees. At this time, the leaflet growth extending beyond the gall will sometimes die and turn reddish brown producing an unsightly appearance. Adult flies emerge from the fallen galls on the ground.

The flies may have two generations per year with a second set of galls appearing in late-July or August. The second generation gall-makers spend the winter on the ground as pupae in fallen galls. Although the galls and browned-tipped foliage may reduce the aesthetic appeal of infested trees, the flies appear to cause no appreciable harm to the health of the tree. Populations are often regulated by a wide range of parasitoids that target the maggots. Therefore, insecticide applications are not recommended. Pruning and destroying galls now on small trees will reduce the number of future galls.

C. WINDSHIELD WIPES. BYGLers also ran into a few other insect pests this week including:

* The COMMON BAGWORM (*Thyridopteryx ephemeraeformis*) feeding season is coming to an end. Curtis Young and Joe Boggs reported that bagworm caterpillars in northwest and southwest Ohio, respectively, are beginning to tie their bags to anchorage points and are closing the bags' openings in preparation for pupation. While there remains some earlier instar bagworms mixed among older caterpillars, by and large it is too late to treat with an insecticide to effectively manage bagworm populations for next season. Late instar bagworms have the ability to pupate early if they sense that they're being intoxicated, thus insecticides will not eliminate infestations for next season. Bagworms spend the winter as eggs inside the bags, so hand-picking bags from host plants is the only effective management option available at this time.

*Pam Bennett reported that while JAPANESE BEETLES (*Popillia japonica*) are continuing to feed on preferred host plants in her part of the state, the overall damage this season remains relatively low. Beetle population densities have been highly variable across Ohio this season. While some areas have been almost "beetle free," other areas have experienced damaging localized populations, particularly in the northeast part of the state.
4. DISEASE DIGEST.

A. MOIST CHAMBER. Moist and cool weather continues to provide environmental conditions conducive to many diseases. Nancy Taylor from the WCEPPDC reports a single sample which contained PHYTOPHTHORA on SNAPDRAGON and SCLEROTINIA WHITE ROT of VINCA and ZINNIA. Phytophthora-induced diseases are common in our wet soil conditions as evidenced by the very inclusion of Phytophthora and its fellow travelers under the name of water-molds. The white rots caused by Sclerotinia sclerotiorum are difficult-to-control diseases that Nancy points out are more prevalent in summers such as this. We do not necessarily suspect them to be as bad in drier seasons, though in years such as this, with Sclerotinia prevalent, there may be more of the hardened mycelial masses known as sclerotia which may overwinter until next year. Other diseases noted by BYGLers were GUIGNARDIA LEAF SPOT OF BOSTON IVY, CLADOSPORIUM LEAF BLOTCH OF PEONY, and a range of different POWDERY MILDEW DISEASES on PEONY, on LILAC, on PHLOX, and on COREOPSIS.

B. DIAGNOSTIC CHALLENGES. Speaking of coreopsis and speaking of diagnostics, OSU Extension does a number of DIAGNOSTIC WORKSHOPS each year. Such was the case in Toronto at the International Society of Arboriculture annual conference last week, and such is the case at numerous BYGLive! Diagnostic Walks in southwest Ohio led by Joe Boggs each month. Such are the Diagnostic Walkabouts of ONLA and OSUE led by Tim Malinich, and such is the 81st Ohio Plant Diagnostic Workshop to be held in Wooster and OARDC’s Secrest Arboretum on September 4 (see below). Here are a few recent examples of diagnostic samples used in these workshops:

Outside the Ornamental Plant Germplasm Center in Columbus, on the OSU Ag Campus next to Howlett Hall are numerous flowerbeds, as well as petunia and other flower displays. In the coreopsis beds next to the greenhouse there is a whitish substance on the coreopsis – powdery mildew? Easy to think so at first glance, and indeed there is some coreopsis powdery mildew nearby. But in this case the white substance was not living, but simply splashes of whitewash used for shading on the greenhouse glass.

In Toronto, a good diagnostic example was a plant that we thought would be a great example of the symptoms of yellowing due to nutrient deficiency or root problems – until we noted excellent annual growth – and the sign, which noted it was a golden wayfaringtree viburnum (Viburnum lantana 'Aurea'). Or a group of hedges, including euonymus and dogwood, with leaf scorch and discoloration, difficult to diagnose - without the context that these were the tops of hedges recently sheared and now experiencing direct sun and resulting sun scald. Imagine trying to intuit this if you did not have information about the horticultural history (Question #11 of the 20 Questions of Plant Diagnostics – check this fact sheet out at ohioline.osu.edu and for the many other OSU Fact Sheets – this one is in the Plant Pathology Series). Remember the first rule of plant diagnostics: there are no sure-fire rules. And the second rule: Be humble – or be humiliated!

5. TURF TIPS. No Report.

6. INDUSTRY INSIGHTS.

A. THOUSAND CANKERS DISEASE (TCD) CONFIRMED IN OHIO. The Ohio Department of Agriculture (ODA) has announced that TCD of walnut has been confirmed in Butler County, Ohio. This disease of black walnut (Juglans nigra) is caused by a fungus (Geosmithia sp.) that is carried from tree to
tree by the WALNUT TWIG BEETLE (*Pityophthorus juglandis*) (WTB); a type of bark beetle. Here is a quote from the news release from the Ohio Department of Agriculture (ODA):

"Walnut Twig Beetle was first confirmed in Ohio in late 2012 in traps set by Ohio Department of Natural Resources Division of Forestry officials in Butler County. Additionally, scientists from the Ohio Plant Diagnostic Network, a cooperative partnership between ODA and The Ohio State University, recently isolated the TCD fungus from walnut branch samples from the Butler County area, marking the first time TCD has been confirmed in Ohio."

TCD has been a problem in recent years in a number of western US states, killing thousands of black walnuts planted there. Of major concern was the possibility of the disease developing in the native range for black walnut, the Midwest and southern states that includes Ohio. Unfortunately, Ohio now joins Tennessee, North Carolina, Pennsylvania, and Virginia as eastern states where TCD has been confirmed. Thankfully, TCD has not become widespread in those states; however, landscapers, forest managers, and walnut growers should be vigilant.

WTB is an extremely small bark beetle measuring a little over 1/16" in length. Adults spend the winter in cavities excavated in the bark of walnut trees. The overwintered adults emerge in the spring to mate and initiate the next generation. WTB behaves like other bark beetles (*Coleoptera: Scolytidae*); both the adults and larvae are phloem feeders. Adults bore through the bark and into the phloem where they tunnel, feed, and lay eggs. The resulting larvae continue to feed and develop in the phloem until they pupate and emerge as new adults creating new emergence holes through the bark. Emergence of the second generation adults occurs in mid-to-late summer; however, the exact timing of various stages of the life cycle has not yet been studied in Ohio.

Despite its common name, WTB actually targets branches that are greater than 1/2" in diameter. They will also tunnel into main stems. The adult and larval tunneling and feeding activity produces symptoms typical of bark beetles with frass-filled galleries meandering through the phloem. However, what is atypical is the development of characteristic dark brown to brownish-black fungal cankers around the galleries and diffusing outward from the galleries. Although cankers may appear small, it's the development of thousands of phloem cankers that can eventually kill infected branches and ultimately entire trees; thus, the common name of the disease.

Symptoms of TCD include yellowing foliage (chlorosis) that progresses rapidly to brown wilted foliage, and finally branch dieback. Infected trees develop thinning canopies and top dieback with epicormic growth sometimes sprouting from lower portions of main stems. Unfortunately, the current leaf chlorosis and leaf drop that is being caused by walnut anthracnose may confuse the issue. However, walnut anthracnose first produces distinct dark brown spots on the leaflets that are typically surrounded by a yellow halo. The yellowing tissue eventually expands to include the entire leaflet at which time the leaflet drops from the tree. Of course, walnuts with TCD may also suffer from anthracnose, so it is important to distinguish the symptoms of the two diseases. Thus far, there have been no controls developed for TCD; neither for the beetle nor for the fungus.

An adult aggregation pheromone that attracts both male and female beetles is available and has been used in traps to detect WTB; thus far, the beetles have never been found without the fungus that causes TCD. The WTB detection trapping program in Ohio has been a team effort between the ODA and the Ohio Department of Natural Resources (ODNR) with ODNR personnel deploying and monitoring traps throughout the state and ODA deploying traps within and around the TCD site in Butler County. A trapping grid will be deployed by the ODA to determine the extent of the WTB infestation. Please report suspicious walnut trees to the ODA at 855-252-6450 or by e-mail at [plantpest@agri.ohio.gov].
B. EAB - AMBROSIA BEETLE CONNECTION? Participants in this week's S.W. Ohio BYGLive! Diagnostic Walk-About observed large, mature ash trees recently killed by EMERALD ASH BORER (*Agrilus planipennis*) (EAB) that were heavily infested with AMBROSIA BEETLES (family Scolytidae). The observation sparked a discussion about a possible connection between the two types of tree borers: does a rapid rise in expiring trees being killed by EAB produce a significant collateral rise in the populations of insects that make a living on dying or dead trees? We first speculated on this connection last season (BYGL 2012-17, 07/26/12) with unusually heavy ambrosia beetle infestations being observed on newly planted trees in an area of southwest Ohio that was also experiencing high ash tree mortality from EAB.

Ambrosia beetles are very small, measuring only 1/8 - 1/4" long. They bore through the bark and into the xylem (wood) creating shot-sized holes in the bark and tunnels in the wood. As the female beetles tunnel forward into trees to lay eggs, they push a mixture of excrement (frass) and wood particles backwards. The sticky mixture clings together as it is extruded from the entrance holes and has been commonly described as looking like "frass toothpicks".

The beetles release fungi from specialized oral structures called mycangia and the fungi colonize the wood. Ambrosia beetle larvae do not eat wood; instead, they eat the fungal "ambrosia" that grows from the walls of the tunnels created by the adults. Some types of ambrosia fungi will stain wood producing distinctive dark blue to black streaks in the wood. The beetle's tunneling activity coupled with the fungal wood staining can seriously degrade lumber quality.

Ambrosia beetles do not select healthy trees. Some species focus their attention on stressed or dying trees while others prefer dead trees. Joe Boggs noted last season that reports from arborists of ambrosia beetles infesting newly planted landscape trees had been gradually rising over the past few years in southwest Ohio. Whether or not there is a connection between increased ash mortality by EAB and an increase in ambrosia beetle activity can only be speculated since there has been no data collected to evaluate such a connection. However, BYGL readers should be aware that such a connection is possible, so newly planted trees should be closely monitored. It is particularly important to provide proper after-planting care for newly planted trees to reduce the chances that the trees will become ambrosia beetle fodder.

C. ELONGATE HEMLOCK SCALE. Participants in this week's S.W. Ohio BYGLive! Diagnostic Walk-About also observed elongate hemlock scale (*Fiorinia externa*) on Canadian hemlock. This non-native armored scale is sometimes called "Fiorinia scale." The scale was accidently introduced to the U.S. from Japan and was first found in New York, NY, in 1908. Ohio is currently on the western edge of the scale's spread across the U.S. It is a serious pest of hemlocks but will occasionally be found on other conifers including firs, Douglas-fir, spruces, cedars, pines, and yews.

The elongate hemlock scale occurs on the underside of needles and on cones. The common name is descriptive. Mature females are covered by a waxy slightly translucent "test" that is elongated and parallel-sided. The test ranges in color from yellowish-brown to brownish-orange. The waxy tests covering mature males are white and also elongated. The mobile soft bodied first instar nymphs (crawlers) are lemon yellow. Second instar nymphs (settled crawlers) are also soft bodied; however, they are sedentary and enclosed in an oval, amber-colored covering. The settled crawlers secrete waxy white filaments. Occasionally, the underside of infested needles may become covered by tangled strands of this white flocculent material.

The scale spends the winter as fertilized females or eggs. Overwintered eggs hatch in early spring and overwintered females continue to produce eggs throughout the spring. Thus, the resulting crawler stage lasts for an extended period of time. The crawlers move to new growth where they settle, feed, and
eventually develop into mature males and females. The mature scales mate to produce a second generation and eggs produced by the second generation females give rise to individuals that overwinter.

Like all armored scales, the elongate hemlock scale feeds by inserting their piercing-sucking mouthparts into needles to withdraw nutrients from mesophyll cells. Damage symptoms include yellow banding on the needles, overall needle yellowing, and needle loss. Severe damage will produce branch dieback. Heavy infestations also weaken trees making them more susceptible to other pests or death from environmental challenges such as drought.

Management of this scale is made difficult because all life stages may be present at the same time during the season. Foliar insecticide applications targeting crawlers have been shown to be effective; however, multiple applications are required. Summer applications of the systemic insecticide dinotefuran (e.g. Safari) have been shown to be effective in suppressing elongate hemlock scale; however, imidacloprid (e.g. Merit) is not effective against armored scales.

7. WEATHERWATCH.

WEATHER UPDATE. The following weather information summarizes data collected at various Ohio Agricultural Research Development Center (OARDC) Weather Stations spanning the dates from August 1 - 14, 2013, with the exception of the soil temperatures which are readings from Wednesday, August 14, 2013 at 5:05 p.m.

It is beginning to feel a little bit like fall. Evening temperatures have fallen into the forties on Tuesday evening in NW Ohio. Temperatures are predicted to return to more August-like highs next week.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashtabula</td>
<td>NE</td>
<td>74.6</td>
<td>58.7</td>
<td>1.40"</td>
<td>1.8"</td>
<td>75.13/73.64</td>
</tr>
<tr>
<td>Wooster</td>
<td>NE</td>
<td>78.5</td>
<td>58.6</td>
<td>1.22"</td>
<td>1.7"</td>
<td>72.37/71.20</td>
</tr>
<tr>
<td>Hoytville</td>
<td>NW</td>
<td>78.6</td>
<td>59.6</td>
<td>0.93"</td>
<td>1.3"</td>
<td>79.14/73.07</td>
</tr>
<tr>
<td>Columbus</td>
<td>Central</td>
<td>82.2</td>
<td>62.5</td>
<td>1.55"</td>
<td>1.8"</td>
<td>74.48/73.66</td>
</tr>
<tr>
<td>Piketon</td>
<td>South</td>
<td>82.4</td>
<td>62.0</td>
<td>0.79"</td>
<td>0.8"</td>
<td>74.45/73.73</td>
</tr>
</tbody>
</table>

For a link to the OARDC Weather Stations, visit: [http://www.oardc.ohio-state.edu/centernet/weather.htm].

8. COMING ATTRACTIONS.

A. DIAGNOSTIC WALKABOUT FOR THE GREEN INDUSTRY. Diagnostic Walkabout for the Green Industry series is once again occurring around Ohio this summer. ONLA, AGI and OSU Extension will be hosting 2 more events in 2013: September 12, Inniswood Metro Gardens, Westerville; and September 26, Sunset Memorial Park, North Olmsted. Pre-registration is required and class size is limited to 30 per class. ODA, ISA and OCNT credits available. For registration, location, and pesticide credit information see: [http://www.onla.org].

B. OHIO PLANT DIAGNOSTIC WORKSHOP. Check out [go.osu.edu/chatfield] for a registration form for the 81st running of the Ohio Plant Diagnostic Workshop, to be held on September 4 at the Secrest Arboretum of Ohio State University’s Wooster Campus. The registration fee is $40.00. This program,
sponsored by OSU’s Extension Nursery Landscape and Turf Team, the ONLA and the Davey Tree Expert Company is a full day of hands-on diagnostic samples and walks, and updates by OSU’s Joe Boggs, Francesca Peduto, Nancy Taylor, Curtis Young, Erik Draper, and Jim Chatfield, and all the assembled experts. If you want to learn, teach, and catharse about landscape, treescape, nursery, and greenhouse plant health problems, from beetles to blights to botany, this is the place.

C. NAME THAT TREE WORKSHOP. Join fellow tree IDers on September 27, 2013 at the Secrest Arboretum of Ohio State University’s Ohio Agricultural Research and Development Center in Wooster, Ohio. We will be conducting a Name That Tree Workshop sponsored by the OSU Extension Woodland Stewards and Nursery Landscape and Turf Team, combining tree ID from both sides now, from woodland species to landscape cultivars. You can register online at [http://woodlandstewards.osu.edu]. It will be a full day of indoor and outdoor sessions at the Jack and Deb Miller Pavilion and the Arboretum plantings. Cost is $35. Also check out all the other great Woodland Stewards programs listed on the site.

D. ArborEatUm EDIBLE LANDSCAPE WORKSHOP. A unique opportunity awaits you in Wooster at the Secrest Arboretum of Ohio State University’s Ohio Agricultural Research and Development Center on Wednesday, October 9. After a long hiatus, we are renewing our Edible Landscape Workshop. We will feature ornamental plants that also taste good and plant foods that taste good that are also ornamental, from asparagus to blueberries. File gumbo anyone? What does that have to do with edible landscapes? File powder is --- ground up sassafras leaves. Chef Paul Snyder plans to have on hand his International Ornamental Crabapple Society-renowned Malus Mo Mas Magnifico Meatball Munchies for all to sample. Who’s up for choking down some Viking Aronia jelly? Here’s the deal:

When: Tuesday, October 7, 5:00-8:00 p.m.
Where: Secrest Arboretum, Wooster, Ohio
What: Edible Landscape Workshop
Who: Those who love landscape plants and good eats
What: Walks, talks, and taste tests galore
How: Print out a registration form soon (next week) at the go.osu.edu/chatfield website.

Here is the registration deal:

$25 for full registration, handouts and food
$20 if you bring an Edible Landscape recipe ($5 rebate)
$15 if the recipe is fully realized, i.e. you bring the real thing to share ($10 rebate)
$10 if your recipe is voted to be included for the Secrest ArborEatUm fundraiser Edible Landscape Cookbook which will debut at Secrest’s Plant Discovery Day next May 10 ($20 rebate)

E. WHY TREES MATTER FORUM. The annual Why Trees Matter Forum, after a year’s hiatus, returns to Ohio State and Wooster, Ohio this Autumn on Wednesday, October 16, 2013. You can register at [http://woodlandstewards.osu.edu]. The cost is $60 for early registration. You will be sure to learn a great deal about the multiple benefits of trees and the practice of learning and teaching about these benefits. We will discuss the latest on i-Tree benefits, the OSU Arbo-Charrette Program, the Tree Campus USA program of the College of Wooster, updates on the pervasiveness of invasiveness in our urban and woodland forests (including the new Great Lakes Early Detection Network smartphone app). We will also highlight Wildlife and Trees, in a much-anticipated talk by Marne Titchenell of the OSU School of Environment and Natural Resources. Green ink your calendar.

9. BYGLOSOPHY. "Someone's sitting in the shade today because someone planted a tree a long time ago.” Les Brown
APPENDIX - ADDITIONAL WEBSITE RESOURCES:

Ask a Master Gardener Volunteer (Consumer Gardening Questions)
http://mastergardener.osu.edu/ask

Buckeye Turf
http://buckeyeturf.osu.edu

Emerald Ash Borer Information
http://ashalert.osu.edu

Growing Degree Days and Phenology for Ohio
http://www.oardc.ohio-state.edu/gdd/

Hungry Pests Website
http://www.HungryPests.com

Ohio State University Department of Horticulture and Crop Science Plantfacts
http://plantfacts.osu.edu/web/

Ohio State University Extension Master Gardener Volunteer Program
http://mastergardener.osu.edu

The C. Wayne Ellett Plant and Pest Diagnostic Clinic (CWEPPDC)
http://ppdc.osu.edu/

USDA APHIS Beetle Buster Website (Asian Longhorned Beetle)
http://asianlonghornedbeetle.com

Following are the participants in the August 13th conference call: Pam Bennett (Clark); Joe Boggs (Hamilton); Jim Chatfield (Hort and Crop Science); Julie Crook (Hamilton); Denise Johnson (Master Gardener Program); Amy Stone (Lucas); Nancy Taylor (C. Wayne Ellett Plant and Pest Diagnostic Clinic); Marne Titchenell (SENR); and Curtis Young (Van Wert).

BYGL is available via email, contact Cheryl Fischnich [fischnich.1@cfaes.osu.edu] to subscribe or to unsubscribe. Additional fact sheet information on any of these articles may be found through the OSU FactSheet database [http://plantfacts.osu.edu/web].

BYGL is a service of OSU Extension and is aided by support from the ONLA (Ohio Nursery and Landscape Association) [http://onla.org/ ; http://buckeyegardening.com/] to the OSU Extension Nursery, Landscape and Turf Team (ENLTT). Any materials in this newsletter may be reproduced for educational purposes providing the source is credited.

BYGL is available online at: [http://bygl.osu.edu], a website sponsored by the Ohio State University Department of Horticulture and Crop Sciences (HCS) as part of the "Horticulture in Virtual Perspective." The online version of BYGL has images associated with the articles and links to additional information.

Where trade names are used, no discrimination is intended and no endorsement by Ohio State University Extension is implied. Although every attempt is made to produce information that is complete, timely,
and accurate, the pesticide user bears responsibility of consulting the pesticide label and adhering to those directions.

Ohio State University Extension embraces human diversity and is committed to ensuring that all research and related educational programs are available to clientele on a nondiscriminatory basis without regard to race, color, religion, sex, age, national origin, sexual orientation, gender identity or expression, disability, or veteran status. This statement is in accordance with United States Civil Rights Laws and the USDA.

Keith L. Smith, Associate Vice President for Agricultural Administration; Associate Dean, College of Food, Agricultural, and Environmental Sciences; Director, Ohio State University Extension and Gist Chair in Extension Education and Leadership. TDD No. 800-589-8292 (Ohio only) or 614-292-6181.